Copied to
clipboard

G = C23.709C24order 128 = 27

426th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.709C24, C22.4822+ 1+4, C22.3692- 1+4, (C2×Q8).14Q8, C2.35(Q83Q8), (C2×C42).728C22, (C22×C4).222C23, C2.22(C232Q8), C22.170(C22×Q8), (C22×Q8).229C22, C23.65C23.87C2, C2.C42.413C22, C23.83C23.45C2, C23.67C23.62C2, C23.81C23.49C2, C23.63C23.60C2, C2.50(C22.49C24), C2.56(C22.57C24), C2.120(C22.33C24), (C2×C4).94(C2×Q8), (C2×C4).250(C4○D4), (C2×C4⋊C4).519C22, C22.570(C2×C4○D4), SmallGroup(128,1541)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.709C24
C1C2C22C23C22×C4C2×C42C23.65C23 — C23.709C24
C1C23 — C23.709C24
C1C23 — C23.709C24
C1C23 — C23.709C24

Generators and relations for C23.709C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=ca=ac, e2=g2=ba=ab, f2=cb=bc, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >

Subgroups: 324 in 184 conjugacy classes, 96 normal (14 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×Q8, C23.63C23, C23.65C23, C23.67C23, C23.67C23, C23.81C23, C23.83C23, C23.709C24
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.33C24, C232Q8, C22.49C24, Q83Q8, C22.57C24, C23.709C24

Smallest permutation representation of C23.709C24
Regular action on 128 points
Generators in S128
(1 77)(2 78)(3 79)(4 80)(5 127)(6 128)(7 125)(8 126)(9 39)(10 40)(11 37)(12 38)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)(29 36)(30 33)(31 34)(32 35)(41 46)(42 47)(43 48)(44 45)(49 54)(50 55)(51 56)(52 53)(57 62)(58 63)(59 64)(60 61)(65 70)(66 71)(67 72)(68 69)(73 97)(74 98)(75 99)(76 100)(81 86)(82 87)(83 88)(84 85)(89 94)(90 95)(91 96)(92 93)(101 108)(102 105)(103 106)(104 107)(109 116)(110 113)(111 114)(112 115)(117 124)(118 121)(119 122)(120 123)
(1 106)(2 107)(3 108)(4 105)(5 100)(6 97)(7 98)(8 99)(9 66)(10 67)(11 68)(12 65)(13 47)(14 48)(15 45)(16 46)(17 43)(18 44)(19 41)(20 42)(21 55)(22 56)(23 53)(24 54)(25 51)(26 52)(27 49)(28 50)(29 63)(30 64)(31 61)(32 62)(33 59)(34 60)(35 57)(36 58)(37 69)(38 70)(39 71)(40 72)(73 128)(74 125)(75 126)(76 127)(77 103)(78 104)(79 101)(80 102)(81 115)(82 116)(83 113)(84 114)(85 111)(86 112)(87 109)(88 110)(89 123)(90 124)(91 121)(92 122)(93 119)(94 120)(95 117)(96 118)
(1 79)(2 80)(3 77)(4 78)(5 125)(6 126)(7 127)(8 128)(9 37)(10 38)(11 39)(12 40)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)(29 34)(30 35)(31 36)(32 33)(41 48)(42 45)(43 46)(44 47)(49 56)(50 53)(51 54)(52 55)(57 64)(58 61)(59 62)(60 63)(65 72)(66 69)(67 70)(68 71)(73 99)(74 100)(75 97)(76 98)(81 88)(82 85)(83 86)(84 87)(89 96)(90 93)(91 94)(92 95)(101 106)(102 107)(103 108)(104 105)(109 114)(110 115)(111 116)(112 113)(117 122)(118 123)(119 124)(120 121)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 119 103 92)(2 123 104 94)(3 117 101 90)(4 121 102 96)(5 114 76 85)(6 112 73 81)(7 116 74 87)(8 110 75 83)(9 26 71 53)(10 24 72 49)(11 28 69 55)(12 22 70 51)(13 58 42 29)(14 64 43 33)(15 60 44 31)(16 62 41 35)(17 59 48 30)(18 61 45 34)(19 57 46 32)(20 63 47 36)(21 68 50 37)(23 66 52 39)(25 65 56 38)(27 67 54 40)(77 122 106 93)(78 120 107 89)(79 124 108 95)(80 118 105 91)(82 125 109 98)(84 127 111 100)(86 128 115 97)(88 126 113 99)
(1 109 101 84)(2 88 102 115)(3 111 103 82)(4 86 104 113)(5 117 74 92)(6 96 75 123)(7 119 76 90)(8 94 73 121)(9 29 69 60)(10 64 70 35)(11 31 71 58)(12 62 72 33)(13 52 44 21)(14 27 41 56)(15 50 42 23)(16 25 43 54)(17 24 46 51)(18 55 47 26)(19 22 48 49)(20 53 45 28)(30 38 57 67)(32 40 59 65)(34 66 63 37)(36 68 61 39)(77 116 108 85)(78 83 105 112)(79 114 106 87)(80 81 107 110)(89 97 118 126)(91 99 120 128)(93 127 124 98)(95 125 122 100)
(1 42 103 13)(2 14 104 43)(3 44 101 15)(4 16 102 41)(5 37 76 68)(6 65 73 38)(7 39 74 66)(8 67 75 40)(9 98 71 125)(10 126 72 99)(11 100 69 127)(12 128 70 97)(17 107 48 78)(18 79 45 108)(19 105 46 80)(20 77 47 106)(21 84 50 111)(22 112 51 81)(23 82 52 109)(24 110 49 83)(25 115 56 86)(26 87 53 116)(27 113 54 88)(28 85 55 114)(29 93 58 122)(30 123 59 94)(31 95 60 124)(32 121 57 96)(33 120 64 89)(34 90 61 117)(35 118 62 91)(36 92 63 119)

G:=sub<Sym(128)| (1,77)(2,78)(3,79)(4,80)(5,127)(6,128)(7,125)(8,126)(9,39)(10,40)(11,37)(12,38)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27)(29,36)(30,33)(31,34)(32,35)(41,46)(42,47)(43,48)(44,45)(49,54)(50,55)(51,56)(52,53)(57,62)(58,63)(59,64)(60,61)(65,70)(66,71)(67,72)(68,69)(73,97)(74,98)(75,99)(76,100)(81,86)(82,87)(83,88)(84,85)(89,94)(90,95)(91,96)(92,93)(101,108)(102,105)(103,106)(104,107)(109,116)(110,113)(111,114)(112,115)(117,124)(118,121)(119,122)(120,123), (1,106)(2,107)(3,108)(4,105)(5,100)(6,97)(7,98)(8,99)(9,66)(10,67)(11,68)(12,65)(13,47)(14,48)(15,45)(16,46)(17,43)(18,44)(19,41)(20,42)(21,55)(22,56)(23,53)(24,54)(25,51)(26,52)(27,49)(28,50)(29,63)(30,64)(31,61)(32,62)(33,59)(34,60)(35,57)(36,58)(37,69)(38,70)(39,71)(40,72)(73,128)(74,125)(75,126)(76,127)(77,103)(78,104)(79,101)(80,102)(81,115)(82,116)(83,113)(84,114)(85,111)(86,112)(87,109)(88,110)(89,123)(90,124)(91,121)(92,122)(93,119)(94,120)(95,117)(96,118), (1,79)(2,80)(3,77)(4,78)(5,125)(6,126)(7,127)(8,128)(9,37)(10,38)(11,39)(12,40)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25)(29,34)(30,35)(31,36)(32,33)(41,48)(42,45)(43,46)(44,47)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(65,72)(66,69)(67,70)(68,71)(73,99)(74,100)(75,97)(76,98)(81,88)(82,85)(83,86)(84,87)(89,96)(90,93)(91,94)(92,95)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,119,103,92)(2,123,104,94)(3,117,101,90)(4,121,102,96)(5,114,76,85)(6,112,73,81)(7,116,74,87)(8,110,75,83)(9,26,71,53)(10,24,72,49)(11,28,69,55)(12,22,70,51)(13,58,42,29)(14,64,43,33)(15,60,44,31)(16,62,41,35)(17,59,48,30)(18,61,45,34)(19,57,46,32)(20,63,47,36)(21,68,50,37)(23,66,52,39)(25,65,56,38)(27,67,54,40)(77,122,106,93)(78,120,107,89)(79,124,108,95)(80,118,105,91)(82,125,109,98)(84,127,111,100)(86,128,115,97)(88,126,113,99), (1,109,101,84)(2,88,102,115)(3,111,103,82)(4,86,104,113)(5,117,74,92)(6,96,75,123)(7,119,76,90)(8,94,73,121)(9,29,69,60)(10,64,70,35)(11,31,71,58)(12,62,72,33)(13,52,44,21)(14,27,41,56)(15,50,42,23)(16,25,43,54)(17,24,46,51)(18,55,47,26)(19,22,48,49)(20,53,45,28)(30,38,57,67)(32,40,59,65)(34,66,63,37)(36,68,61,39)(77,116,108,85)(78,83,105,112)(79,114,106,87)(80,81,107,110)(89,97,118,126)(91,99,120,128)(93,127,124,98)(95,125,122,100), (1,42,103,13)(2,14,104,43)(3,44,101,15)(4,16,102,41)(5,37,76,68)(6,65,73,38)(7,39,74,66)(8,67,75,40)(9,98,71,125)(10,126,72,99)(11,100,69,127)(12,128,70,97)(17,107,48,78)(18,79,45,108)(19,105,46,80)(20,77,47,106)(21,84,50,111)(22,112,51,81)(23,82,52,109)(24,110,49,83)(25,115,56,86)(26,87,53,116)(27,113,54,88)(28,85,55,114)(29,93,58,122)(30,123,59,94)(31,95,60,124)(32,121,57,96)(33,120,64,89)(34,90,61,117)(35,118,62,91)(36,92,63,119)>;

G:=Group( (1,77)(2,78)(3,79)(4,80)(5,127)(6,128)(7,125)(8,126)(9,39)(10,40)(11,37)(12,38)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27)(29,36)(30,33)(31,34)(32,35)(41,46)(42,47)(43,48)(44,45)(49,54)(50,55)(51,56)(52,53)(57,62)(58,63)(59,64)(60,61)(65,70)(66,71)(67,72)(68,69)(73,97)(74,98)(75,99)(76,100)(81,86)(82,87)(83,88)(84,85)(89,94)(90,95)(91,96)(92,93)(101,108)(102,105)(103,106)(104,107)(109,116)(110,113)(111,114)(112,115)(117,124)(118,121)(119,122)(120,123), (1,106)(2,107)(3,108)(4,105)(5,100)(6,97)(7,98)(8,99)(9,66)(10,67)(11,68)(12,65)(13,47)(14,48)(15,45)(16,46)(17,43)(18,44)(19,41)(20,42)(21,55)(22,56)(23,53)(24,54)(25,51)(26,52)(27,49)(28,50)(29,63)(30,64)(31,61)(32,62)(33,59)(34,60)(35,57)(36,58)(37,69)(38,70)(39,71)(40,72)(73,128)(74,125)(75,126)(76,127)(77,103)(78,104)(79,101)(80,102)(81,115)(82,116)(83,113)(84,114)(85,111)(86,112)(87,109)(88,110)(89,123)(90,124)(91,121)(92,122)(93,119)(94,120)(95,117)(96,118), (1,79)(2,80)(3,77)(4,78)(5,125)(6,126)(7,127)(8,128)(9,37)(10,38)(11,39)(12,40)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25)(29,34)(30,35)(31,36)(32,33)(41,48)(42,45)(43,46)(44,47)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(65,72)(66,69)(67,70)(68,71)(73,99)(74,100)(75,97)(76,98)(81,88)(82,85)(83,86)(84,87)(89,96)(90,93)(91,94)(92,95)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,119,103,92)(2,123,104,94)(3,117,101,90)(4,121,102,96)(5,114,76,85)(6,112,73,81)(7,116,74,87)(8,110,75,83)(9,26,71,53)(10,24,72,49)(11,28,69,55)(12,22,70,51)(13,58,42,29)(14,64,43,33)(15,60,44,31)(16,62,41,35)(17,59,48,30)(18,61,45,34)(19,57,46,32)(20,63,47,36)(21,68,50,37)(23,66,52,39)(25,65,56,38)(27,67,54,40)(77,122,106,93)(78,120,107,89)(79,124,108,95)(80,118,105,91)(82,125,109,98)(84,127,111,100)(86,128,115,97)(88,126,113,99), (1,109,101,84)(2,88,102,115)(3,111,103,82)(4,86,104,113)(5,117,74,92)(6,96,75,123)(7,119,76,90)(8,94,73,121)(9,29,69,60)(10,64,70,35)(11,31,71,58)(12,62,72,33)(13,52,44,21)(14,27,41,56)(15,50,42,23)(16,25,43,54)(17,24,46,51)(18,55,47,26)(19,22,48,49)(20,53,45,28)(30,38,57,67)(32,40,59,65)(34,66,63,37)(36,68,61,39)(77,116,108,85)(78,83,105,112)(79,114,106,87)(80,81,107,110)(89,97,118,126)(91,99,120,128)(93,127,124,98)(95,125,122,100), (1,42,103,13)(2,14,104,43)(3,44,101,15)(4,16,102,41)(5,37,76,68)(6,65,73,38)(7,39,74,66)(8,67,75,40)(9,98,71,125)(10,126,72,99)(11,100,69,127)(12,128,70,97)(17,107,48,78)(18,79,45,108)(19,105,46,80)(20,77,47,106)(21,84,50,111)(22,112,51,81)(23,82,52,109)(24,110,49,83)(25,115,56,86)(26,87,53,116)(27,113,54,88)(28,85,55,114)(29,93,58,122)(30,123,59,94)(31,95,60,124)(32,121,57,96)(33,120,64,89)(34,90,61,117)(35,118,62,91)(36,92,63,119) );

G=PermutationGroup([[(1,77),(2,78),(3,79),(4,80),(5,127),(6,128),(7,125),(8,126),(9,39),(10,40),(11,37),(12,38),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27),(29,36),(30,33),(31,34),(32,35),(41,46),(42,47),(43,48),(44,45),(49,54),(50,55),(51,56),(52,53),(57,62),(58,63),(59,64),(60,61),(65,70),(66,71),(67,72),(68,69),(73,97),(74,98),(75,99),(76,100),(81,86),(82,87),(83,88),(84,85),(89,94),(90,95),(91,96),(92,93),(101,108),(102,105),(103,106),(104,107),(109,116),(110,113),(111,114),(112,115),(117,124),(118,121),(119,122),(120,123)], [(1,106),(2,107),(3,108),(4,105),(5,100),(6,97),(7,98),(8,99),(9,66),(10,67),(11,68),(12,65),(13,47),(14,48),(15,45),(16,46),(17,43),(18,44),(19,41),(20,42),(21,55),(22,56),(23,53),(24,54),(25,51),(26,52),(27,49),(28,50),(29,63),(30,64),(31,61),(32,62),(33,59),(34,60),(35,57),(36,58),(37,69),(38,70),(39,71),(40,72),(73,128),(74,125),(75,126),(76,127),(77,103),(78,104),(79,101),(80,102),(81,115),(82,116),(83,113),(84,114),(85,111),(86,112),(87,109),(88,110),(89,123),(90,124),(91,121),(92,122),(93,119),(94,120),(95,117),(96,118)], [(1,79),(2,80),(3,77),(4,78),(5,125),(6,126),(7,127),(8,128),(9,37),(10,38),(11,39),(12,40),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25),(29,34),(30,35),(31,36),(32,33),(41,48),(42,45),(43,46),(44,47),(49,56),(50,53),(51,54),(52,55),(57,64),(58,61),(59,62),(60,63),(65,72),(66,69),(67,70),(68,71),(73,99),(74,100),(75,97),(76,98),(81,88),(82,85),(83,86),(84,87),(89,96),(90,93),(91,94),(92,95),(101,106),(102,107),(103,108),(104,105),(109,114),(110,115),(111,116),(112,113),(117,122),(118,123),(119,124),(120,121)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,119,103,92),(2,123,104,94),(3,117,101,90),(4,121,102,96),(5,114,76,85),(6,112,73,81),(7,116,74,87),(8,110,75,83),(9,26,71,53),(10,24,72,49),(11,28,69,55),(12,22,70,51),(13,58,42,29),(14,64,43,33),(15,60,44,31),(16,62,41,35),(17,59,48,30),(18,61,45,34),(19,57,46,32),(20,63,47,36),(21,68,50,37),(23,66,52,39),(25,65,56,38),(27,67,54,40),(77,122,106,93),(78,120,107,89),(79,124,108,95),(80,118,105,91),(82,125,109,98),(84,127,111,100),(86,128,115,97),(88,126,113,99)], [(1,109,101,84),(2,88,102,115),(3,111,103,82),(4,86,104,113),(5,117,74,92),(6,96,75,123),(7,119,76,90),(8,94,73,121),(9,29,69,60),(10,64,70,35),(11,31,71,58),(12,62,72,33),(13,52,44,21),(14,27,41,56),(15,50,42,23),(16,25,43,54),(17,24,46,51),(18,55,47,26),(19,22,48,49),(20,53,45,28),(30,38,57,67),(32,40,59,65),(34,66,63,37),(36,68,61,39),(77,116,108,85),(78,83,105,112),(79,114,106,87),(80,81,107,110),(89,97,118,126),(91,99,120,128),(93,127,124,98),(95,125,122,100)], [(1,42,103,13),(2,14,104,43),(3,44,101,15),(4,16,102,41),(5,37,76,68),(6,65,73,38),(7,39,74,66),(8,67,75,40),(9,98,71,125),(10,126,72,99),(11,100,69,127),(12,128,70,97),(17,107,48,78),(18,79,45,108),(19,105,46,80),(20,77,47,106),(21,84,50,111),(22,112,51,81),(23,82,52,109),(24,110,49,83),(25,115,56,86),(26,87,53,116),(27,113,54,88),(28,85,55,114),(29,93,58,122),(30,123,59,94),(31,95,60,124),(32,121,57,96),(33,120,64,89),(34,90,61,117),(35,118,62,91),(36,92,63,119)]])

32 conjugacy classes

class 1 2A···2G4A···4R4S···4X
order12···24···44···4
size11···14···48···8

32 irreducible representations

dim1111112244
type++++++-+-
imageC1C2C2C2C2C2Q8C4○D42+ 1+42- 1+4
kernelC23.709C24C23.63C23C23.65C23C23.67C23C23.81C23C23.83C23C2×Q8C2×C4C22C22
# reps1423424822

Matrix representation of C23.709C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
030000
300000
002000
000200
000012
000004
,
300000
020000
002300
004300
000030
000003
,
100000
010000
003000
001200
000012
000044
,
010000
400000
004000
000400
000012
000044

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,2,4],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,4,0,0,0,0,3,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,1,0,0,0,0,0,2,0,0,0,0,0,0,1,4,0,0,0,0,2,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,4,0,0,0,0,2,4] >;

C23.709C24 in GAP, Magma, Sage, TeX

C_2^3._{709}C_2^4
% in TeX

G:=Group("C2^3.709C2^4");
// GroupNames label

G:=SmallGroup(128,1541);
// by ID

G=gap.SmallGroup(128,1541);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,344,758,723,520,1571,346,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c*a=a*c,e^2=g^2=b*a=a*b,f^2=c*b=b*c,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽